TERNARY WEAKLY AMENABLE C*-ALGEBRAS AND JB*-TRIPLES

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Daugavet Property of C-algebras, Jb-triples, and of Their Isometric Preduals

A Banach space X is said to have the Daugavet property if every rank-one operator T : X −→ X satisfies ‖Id + T ‖ = 1 + ‖T ‖. We give geometric characterizations of this property in the settings of C-algebras, JB-triples and their isometric preduals. We also show that, in these settings, the Daugavet property passes to ultrapowers, and thus, it is equivalent to an stronger property called the un...

متن کامل

Weakly Projective C∗-algebras

The noncommutative analog of an approximative absolute retract (AAR) is introduced, a weakly projective C∗-algebra. This property sits between being residually finite dimensional and projectivity. Examples and closure properties are considered.

متن کامل

On summing operators on JB * - triples

In this paper we introduce 2-JB*-triple-summing operators on real and complex JB*-triples. These operators generalize 2-C*-summing operators on C*-algebras. We also obtain a Pietsch’s factorization theorem in the setting of 2-JB*-triple-summing operators on JB*-triples.

متن کامل

Little Grothendieck’s theorem for real JB*-triples

We prove that given a real JB*-triple E, and a real Hilbert space H , then the set of those bounded linear operators T from E toH , such that there exists a norm one functionalφ ∈ E∗ and corresponding pre-Hilbertian semi-norm ‖.‖φ on E such that ‖T (x)‖ ≤ 4 √ 2‖T‖ ‖x‖φ for all x ∈ E, is norm dense in the set of all bounded linear operators from E toH . As a tool for the above result, we show th...

متن کامل

Homomorphisms and Derivations in C-Ternary Algebras

and Applied Analysis 3 in the middle variable, and associative in the sense that x, y, z,w, v x, w, z, y , v x, y, z , w, v , and satisfies ‖ x, y, z ‖ ≤ ‖x‖ · ‖y‖ · ‖z‖ and ‖ x, x, x ‖ ‖x‖ see 45, 47 . Every left Hilbert C∗-module is a C∗-ternary algebra via the ternary product x, y, z : 〈x, y〉z. If a C∗-ternary algebra A, ·, ·, · has an identity, that is, an element e ∈ A such that x x, e, e ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Quarterly Journal of Mathematics

سال: 2012

ISSN: 0033-5606,1464-3847

DOI: 10.1093/qmath/has032